Google Cardboard: 3D for 3 bucks?

Hey, my Google Cardboard finally got here!

I’m not going to take my own photographs, both because I put my Cardboard together rather poorly and also because photographs don’t communicate much when we’re talking about 3D virtual reality.

The “device” (if you can call it that) looks like this:

Source: CNET
Source: CNET

You put your phone into it like this:

Source: CNET
Source: CNET

Apps designed to work with Google Cardboard display on your phone in split-screen. The left side is your left eye’s field of view and the right side is your right eye’s field of view.

Source: CNET
Source: CNET

The way Cardboard works is that it holds your phone steady and aligned in front of two specially calibrated magnifying lenses– one for each eye. When you hold your eyes up to the lenses, each eye only sees its respective half of the screen, and your brain is able to combine the two slightly different images into a coherent 3D image, just as it does in normal vision.

The potential educational value of 3D virtual reality is probably self-evident to readers of this blog, but to give one quick example, VR enables things like virtual field trips to faraway cities (Athens, Rome, Beijing, etc) or to natural wonders. VR games and simulations could also have educational merit in the right context, such as virtual operations in medical school.

My impressions of Cardboard, though, are slightly negative. Fundamentally, Google Cardboard is a very simple, cheekily-named toy designed to force your phone to be something it was never, ever meant to be: a 3D virtual reality visor. The fact that it works at all- however poor the final experience is- is incredible.

Let’s dig in a bit:

First of all, I got an ultra-cheap knockoff from a Chinese vendor which, at the time of writing, costs $2.99 shipped. The kit was confusing and didn’t quite have all the correct parts, but it did include the lenses, and I was able to fold the cardboard kit up securely enough to use it. For what I paid for it, it was worth every penny. However, I’m sure one of the more expensive kits out there would have given a better experience.

When I tried the popular Tuscan Drive demo, I was surprised at how terrible the graphics looked. Thanks to the magnifying lenses, everything had a “soupy” or distorted quality, and individual subpixels were highly visible. (Have you ever sat so closely to a TV that you could see the individual pinhead-sized red, blue, and green dots that make up the screen? That’s what I’m talking about.) In fact, the graphics were poor enough that although I was indeed seeing things in 3D, the “wow-factor” of the 3D graphics was overwhelmed by the “meh-factor” of how subpar the image was. Maybe the distance between the lenses and the screen wasn’t perfect or something, but there’s nothing I can alter in the calibration of the lens setup.

Plus, the headtracking that can be managed using cellphone-grade accelerometers just isn’t that great. On my Galaxy S3, there was noticeable lag between my real-life head movements and the corresponding in-game head movements, and the field of view often rattled oddly up and down or side to side based on messy data from the accelerometer.

I’m still excited by the technology, though, and rough as the experience is, I’m very glad to have gotten my own Cardboard to play with. Once the Oculus Rift is released, I’ll be sorely tempted to snap one up. If nothing else, the first mass-market VR goggles since the Virtual Boy will have some kitch value in the future, if not necessarily collector’s value.

Leave a Reply